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Abstract
The phonon dispersions of LiD, LiH and NaH for B1 and B2 phases are
computed using density-functional perturbation theory (DFPT) with both local
density (LDA) and generalized gradient (GGA) approximations. It is found
from the phonon dispersion curves that the B2 phase is unstable at low pressure
for all the systems considered. From the vibrational free energy, the coefficient
of the linear thermal expansion, the heat capacity and the vibrational entropy as
a function of temperature at zero pressure are calculated within the framework
of the quasiharmonic approximation. Very good agreement is found for these
properties except in the case of the GGA at high temperature. The equation of
states for NaH B1 and B2 phases at 300 K and the B1-to-B2 phase transition
pressure are in excellent agreement with experimental results. The equation of
state for the LiH B1 phase agrees well with experiments and recent theoretical
calculations. The estimated B1-to-B2 phase transition pressure (308 GPa) is
also in good agreement with other theoretical calculations.

1. Introduction

As the lightest alkali hydride, lithium hydride (LiH) exits in the rock-salt structure (B1) under
normal conditions. Although its electronic, structural and compression properties have been
studied extensively [1–8] because of their important usage in thermonuclear and potential
energy supplies, there still remain some open issues, among which are the impact of the large
zero-point motion, and existence of a rock-salt (B1) to caesium chloride (B2) phase transition,
which has been found in all other alkali hydrides [9]. The first issue been addressed by several
authors recently [6, 10–13], and it is found that the zero point motion plays a crucial role in
accurately determining the lattice constant and bulk modulus of LiH. The second one is more
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subtle, because it intertwines with the metal–insulator transition (MIT) in the B1 phase [3, 11].
To make things worse, theoretical calculations [4, 11] predicted the MIT pressures around
200 GPa, which is almost 200 GPa lower than the experimental extrapolation value [8]. This
is, however, mainly due to an underestimation of the energy gap of insulators by the DFT
method [14]. As a consequence, DFT calculations on LiH using LDA show that MIT should
happen first, followed by the B1-to-B2 transition. Recently, Lebègue et al studied this question
using the GW method and found a simultaneous structural-phase and metal–insulator transition
pressure of 329 GPa [11], which is close to the theoretical B1-to-B2 transition pressure of
313 GPa given by Wang et al [15].

The first issue is mainly addressed within the framework of quasiharmonic approximation
(QHA). Under the QHA, the frequencies depend only on volume, not on temperature; i.e.,
at each volume, the modes behave harmonically and can only change amplitudes without
changing frequencies. But it is essential to calculate the full phonon spectrum as a function
of volume. Since this is computationally too demanding, only recently have there been some
attempts to calculate the temperature dependence of the lattice parameter and bulk modulus.

On the other hand, it has been demonstrated that the Compton profiles of LiH calculated by
the pseudopotential method excluding the core electrons of lithium are in rather poor agreement
with experiment [16]. The reason for this is the inability for the pseudopotential to generate a
realistic valence-charge density in the core region of lithium.

In this paper, we computed the full phonon dispersions of LiH, LiD and NaH for the B1
and B2 phases within a wide range of volume and calculated the temperature dependence of
lattice parameters, bulk modulus and the thermodynamic properties to check the validity of the
QHA in the case of large zero-point motion and the effect of core electrons in the case of alkali
hydrides. The phonon spectra of LiH and LiD in the B1 phase have been calculated by Roma
et al [10] and Ke et al [28] calculated the phonon dispersion curves as well as the entropy
as a function of temperature at zero pressure for the NaH B1 phase. But to our knowledge,
no thermal dynamic properties have been calculated for lithium hydride and its isotopes by
the QHA and no phonon dispersion calculation has been performed on the B2 phase of alkali
hydrides.

2. Theoretical background

2.1. Quasiharmonic approximation and thermodynamic properties

Within the framework of the quasiharmonic approximation, the Helmholtz free energy can be
expressed as [17, 23, 24]

F(V , T ) = E(V ) + Fvib(ω(V ), T )

= E(V ) + kBT
∑

q

∑

j

ln

{
2 sinh

(
h̄ωq, j (V )

2kBT

)}

≡ E(V ) + 1
2

∑

q

∑

j

h̄ωq, j (V ) + kBT
∑

q

∑

j

ln(1 − e−h̄ωq, j (V )/kBT ), (1)

where E is the static contribution to the internal energy. The second and third terms on the
right-hand side of equation (1) are contributions to the free energy from zero-point motion and
thermal excitation, respectively. At zero pressure, the Gibbs free energy equals the Helmholtz
free energy and the equilibrium crystal structure at a given temperature T can be found by
minimizing the Helmholtz free energy with respect to the structure parameters such as the
lattice constants in our case.
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The equation of state is readily obtained from the free energy by the following expression:

p(V , T ) = −
(

∂ F

∂V

)

T

= −
(

dE

dV

)
−

(
∂ Fvib

∂V

)

T

= −
(

dE

dV

)
+ 1

V

∑

q, j

γ j(q, V )ε(ω j (q)), (2)

where γ j (q, V ) is the Grüneisen constant for the (q, j) phonon mode, defined as

γ j (q, V ) = −∂ ln ω j(q, V )

∂ ln V
= −∂ω j (q, V )

∂V

V

ω j (q, V )
, (3)

and ε(ω j (q)) is the vibrational contribution to the internal energy from the (q, j) phonon mode,
defined by

ε j(q, V , T ) = h̄ω j (q, V )

[
1

2
+ 1

exp(h̄ω j (q, V )/kBT ) − 1

]
. (4)

The vibrational entropy S is described by

S(V , T ) = −
(

∂ F

∂T

)

V

= kB

∑

q, j

{
− ln[1 − e−h̄ωq, j (V )/kBT ] + h̄ωq, j (V )/kBT

exp(h̄ωq, j (V )/kBT ) − 1

}
. (5)

The heat capacity per unit cell at constant volume can be obtained from

CV (V , T ) = −T

(
∂2 Fvib

∂T 2

)

V

= kB

∑

q, j

(
h̄ωq, j (V )

2kBT

)2 1

sinh2(
h̄ωq, j (V )

2kBT )
. (6)

The linear thermal expansion coefficients of the cell dimensions of a lattice can be written as

αi = 1

ai

∂ai

∂T
. (7)

An alternative expression can be found using Grüneisen formalism [18]. For a cubic structure
which depends only on one lattice parameter a, the linear thermal expansion coefficient
becomes

α = 1

a2
0

∂2 E
∂a2

∣∣∣
0

∑

q, j

cv(q, j)
−a0

ω0q, j

∂ωq, j(V )

∂a

∣∣∣∣
0

, (8)

where cv(q, j) is the contribution of the phonon mode q, j to the specific heat,
a2

0(∂
2 E/∂a2)|0 = 9B0V0 for the B1 phase of the alkali hydrides, B0 is the bulk modulus, and

V0 is the equilibrium volume of the primitive unit cell at static equilibrium lattice parameter.

2.2. Computational details

The electronic structures, structural properties, phonon dispersions and thermodynamic
properties were calculated using the plane wave pseudopotential code ESPRESSO [19].
The core–valence electron interaction is described by Vanderbilt pseudopotentials [20] with
Perdew–Zunger (PZ) [21] LDA and Perdew–Burke–Ernzerhof (PBE) [22] GGA for the
exchange–correlation functionals. As it has been demonstrated that the Compton profiles
calculated by the pseudopotential method excluding the core electrons are in rather poor
agreement with experiment [16], we explicitly include the semi-core electrons in the valence
states. The valence electronic configurations are 1s22s1 and 2s22p63s1 for Li and Na
respectively. The electronic wavefunctions and charge densities were expanded in plane-wave
basis sets. We used an 80 Ryd cut-off for wavefunctions and 960 and 640 Ryd charge density
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cut-offs for LiH and NaH respectively. The Brillouin-zone integrations have been performed
using a 8 × 8 × 8 special k-point set. Phonon frequencies and phonon densities of state were
calculated on a 4 × 4 × 4 special k-point mesh (this includes the high symmetry points shown
in the phonon dispersion curves). Dynamical matrices on this grid have been calculated and
the real-space interatomic force constants were obtained by inverse Fourier transformation. The
complete phonon dispersion curves were then obtained by interpolating the dynamical matrices
using these force constants. The zero-point motion and temperature effect on the properties of
the systems are taken into account by minimizing the Helmholtz free energies as a function
of structural parameters [23, 24] at constant temperature and zero pressure. We used a very
large k-point grid, 20 × 20 × 20, for BZ sampling in calculating the free energies and related
thermodynamic properties.

3. Results and discussion

3.1. Structural properties

The structural properties of LiH and NaH in the B1 phase have been determined by fitting the
calculated Helmholtz free energies as a function of volume at a certain temperature to either
the Murnaghan equation of state [25]

F(V ) = F(V0) + B0V

B ′
0

[
(V0/V )B ′

0

B ′
0 − 1

+ 1

]
− B0V0

B ′
0 − 1

, (9)

or the Birch third-order equation of state [26]

F(V ) = F(V0) + 9
8 B0V0[(V0/V )2/3 − 1]2 + 9

16 B0V (B ′
0 − 4)[(V0/V )2/3 − 1]3

+ O[(V0/V )2/3 − 1]4 (10)

where B0 and B ′
0 denote the bulk modulus and its pressure derivative at equilibrium volume V0.

The Murnaghan equation of state is used for the B1 phase and the B2 phase is better fitted to
the Birch third-order equation of state. The LDA results are compared with GGA and available
first principles density functional calculation results and experimental values.

We present in table 1 the equilibrium lattice constant a0, bulk modulus B0, and pressure
derivative of the bulk modulus B ′

0 for LiH and LiD in the B1 phase calculated using different
approximations for exchange–correlation functionals. It is evident that the explicit inclusion of
the lattice motion energy greatly improves the agreement between theory and experiments. The
PBE lattice constant with the zero-point energy included is closest to the experiments [1, 2, 7].
For LiH at 300 K, LDA gives a0 = 7.58 au which is 1.8% smaller than experiment and GGA
gives a0 = 7.78 au which is 0.8% larger. While the LDA bulk modulus is in good agreement
with the experimental values, the PBE underestimates the bulk modulus. The lattice parameters
calculated by others using density functional theory vary greatly. Ours are closest to the full
potential calculation of Lebègue et al [11], who used the zero-point energies calculated by
Roma et al in their calculations.

The corresponding structural properties of NaH in the B1 phase calculated using both
approximations for the exchange–correlation functional are given in table 2. As in the case of
lithium hydrides, the lattice constant from the PBE calculation including the zero-point motion
is in excellent agreement with the experiment [9]. At 300 K, the LDA gives a0 = 9.07 au, which
is 2.3% smaller than experiment, and the GGA gives a0 = 9.35 au, which is 0.8% larger. The
LDA and PBE bulk moduli at 300 K are close to the upper and lower limits of the experimental
results and the average value of 196 GPa is in good agreement with the experimental value
of 194 GPa. Our PBE lattice constants are in good agreement with the values given by
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Table 1. Equilibrium lattice constant a0 (bohr), bulk modulus B0 (kbar), and pressure derivative
of the bulk modulus B ′

0 as a function of temperature (K) for LiH and LiD in the B1 phase using
different approximations for exchange–correlation functionals. GGA results from other calculations
are shown in the brackets.

a0 B0 B ′
0 T

LDA (PZ) (this work) 7.389 408 3.64 0
7.544, 7.512 358, 367 3.51, 3.54 0a

7.576, 7.549 332, 339 3.76, 3.81 300a

GGA (PBE) (this work) 7.574 365 3.63 0
7.736, 7.704 316, 325 3.59, 3.62 0a

7.782, 7.753 281, 288 4.18, 4.24 300a

Experiments 7.716, 7.690c 298
7.717, 7.688d 336, 340d 298
7.718, 7.691e 322e 3.53e 298

317 ± 4j 3.4 ± 0.1j 294

Calculations 7.39(7.58)f 400(361)f 0
7.54(7.71)f 359(339)f 0a

7.33g 390g 0
7.48, 7.45g 350, 360g 0a

7.442(7.606)h 405(362)h 0
7.631(7.827)h 333(288)h 298a

7.421i 0
7.559i 366i 3.40i 0a

7.574i 298a

a Zero-point energy included.
b The second value of the same quantity is for LiD.
c Reference [7].
d Reference [1].
e Reference [2].
f Reference [11].
g Reference [10].
h Reference [27].
i Reference [4].
j Reference [5].

Ke et al [28]. The seemingly better agreement of the LDA values with the experimental results
reported in [6] is in fact due to a poor sampling of the BZ as pointed out in [11].

It should be noted that, when using the pseudopotentials with only the outermost 1s
electron as the valence electron for Li and Na, the calculated lattice constants are in very
poor agreement with experiments even when linear core correction is included, with the
only exception of lithium hydrides using the Von Barth and Car type exchange–correlation
functional within the LDA approximation [10].

3.2. Phonon dispersions

The phonon dispersions for both B1 and B2 phases of the alkali hydrides were also calculated.
The phonon dispersion curve of LiD at 300 K for the B1 phase is shown in figure 1(a) and
compared with the experimental values (solid symbols). The overall agreement is very good,
which justifies the validity of our pseudopotentials. Also shown in figure 1 are the phonon
dispersion curves for LiH and NaH in the B1 phase (figures 1(b) and (c) respectively). The three
sets of phonon dispersion curves are quite similar, which comes from the similar electronic
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Figure 1. Phonon dispersion curves along major symmetry directions of the BZ for the B1 phase
of (a) LiD at 300 K (zero-point motion effect included), a0 = 7.55 au, (b) LiH at 0 K and (c) NaH
at 0 K. Experimental data [35] at 0.1 MPa are shown in (a) as filled symbols. All calculations were
performed at zero pressure.

Table 2. Equilibrium lattice constant a0 (bohr), bulk modulus B0 (kbar), and pressure derivative of
the bulk modulus B ′

0 as a function of temperature (K) for NaH in the B1 phase using different
approximations for exchange–correlation functionals. GGA results from other calculations are
shown in the brackets.

a0 B0 B ′
0 Temp.

LDA (PZ) (this work) 8.86 272 3.80 0
9.00 241 3.65 0a

9.07 208 3.75 300a

GGA (PBE) (this work) 9.14 229 3.62 0
9.27 209 3.53 0a

9.35 184 3.50 300a

Experiment 9.28b 194 ± 20b 4.4 ± 0.5b 298

Theory 9.02c 270c 3.7c 0
9.30c 200c 4.1c 0a

9.108d 0
9.235d 234d 0a

9.362d 210d 300a

8.955(9.201)e 272(240)e 0
9.175(9.403)e 226(202)e 298a

a Zero-point energy included.
b Reference [9].
c Reference [6].
d PW-GGA results from reference [28].
e Reference [27].
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Figure 2. Phonon dispersion curves for NaH in the B2 phase at 0 K. (a) 0 GPa, (b) 10.97 GPa and
(c) 29.5 GPa.

structure of the outermost shell for all alkali metals. Due to the different atomic masses, there
is no phonon bandgap between the acoustic and optical phonon branches for LiD and the largest
phonon bandgap is found in NaH.

We show in figure 2 the phonon dispersion curves for NaH B2 structure at pressures of
0, 10.97 and 29.5 GPa. At zero pressure (figure 2(a)), one of the transverse acoustic branches
is unstable around the M point as it is in the case of LiH. But with increasing pressure, the
M point phonon becomes stable around 17 GPa. Figure 2(c) shows the dispersion curves at
29.5 GPa (close to our calculated B1-to-B2 transition pressure of 29.6 GPa). We can see that
the B2 structure of NaH is stable at the B1-to-B2 transition pressure and beyond.

For the B2 structure of LiH, if no Fermi surface smearing parameter is used in the
calculation, the instability of the transverse acoustic branch will persist. This is caused by
the very small bandgap and the band-closing phenomenon with applied pressure. In our
calculation, we used a smearing parameter of 0.05 Ryd and the unstable branch becomes stable
at pressure higher than 160 GPa.

3.3. Thermodynamic properties

Using the phonon frequencies interpolated from the phonon dispersions, we calculated the
thermodynamic properties of lithium deuteride, lithium hydride and sodium hydride. Because
of the large zero-point motion and thermal expansion in our studied systems, the phonon
frequencies are usually computed at more than 15 lattice parameters with an average increment
of 0.05 bohr around the static equilibrium geometry and the results interpolated by cubic
polynomials using the Akima method [29] to get their dependence on lattice constant. For
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Figure 3. (a) Static energy, 0 and 300 K free energy as a function of lattice constant a0 (arrows
denote the minima of the corresponding curves) and (b) zero-point energy (ZPE) and 300 K
vibrational free energy as a function of lattice constant a0 for LiH in B1 phase.
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Figure 4. The equilibrium lattice constant a0 from both LDA and GGA calculations as a function
of temperature for LiH in the B1 phase.

LiH and LiD LDA calculations, the lattice parameters range from 7.29 to 7.98 au; while for
GGA calculations, the corresponding range is 7.47–8.17 au. For NaH GGA calculations,
the chosen lattice parameter range is from 9.04 to 9.50 au as compared to 7.61–9.46 au for
LDA calculations. Such a wide range of lattice constant for the LDA case is essential for
calculating both the thermodynamic properties at zero pressure and the equation of state at
300 K. The volume dependence of the free energy is then calculated using equation (1) and
fitted to the Murnaghan equation of state (we have found in our case that the Birch–Murnaghan
equation of state is not suitable for the B1 phase). This gives us, at any temperature T , the
equilibrium lattice parameter, bulk modulus B0, and its pressure derivative B ′

0. The lattice
constant dependence of the various energy terms at different temperatures can be found in
figure 3.

The variations of the lattice constant with temperature for LiH in the B1 phase calculated
with both LDA and GGA approximations are shown in figure 4 along with experimental values.
It can be seen that the zero-point motion greatly affects the equilibrium lattice constants and the
calculated LDA and GGA results bracket the experimental values. The coefficients of linear
thermal expansion at any temperature are obtained using both the Grüneisen formalism and
direct numerical differentiation of the lattice parameters. The results are shown in figures 5
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Figure 5. Coefficients of linear thermal expansion for LiD ((a) LDA, (b) GGA) and LiH ((c) LDA,
(d) GGA) as a function of temperature calculated with LDA-PZ and GGA-PBE approximations.
Dotted and solid lines are calculated using the Grüneisen formalism [18] at the static and zero-point
motion corrected equilibrium geometries respectively. Open squares represent the direct numerical
differentiation of the lattice constants. Filled circles are the experimental data [32].

and 6. For LiD and LiH, the agreement between experiment and the LDA direct numerical
differentiation of the lattice parameters remains excellent at temperatures below 300 K. We can
also see that if the static equilibrium parameters are used in equation (8) the agreement between
the two curves (shown by the dotted line and open squares) calculated by the two methods is
poor even at very low temperature. This is mainly caused by the large zero-point correction of
the lattice parameter and bulk modulus. The agreement becomes much better when the zero-
point corrected equilibrium lattice parameters and bulk moduli are substituted for the static
ones as shown in the figures by the solid lines in the case of LDA. The GGA results tend to
overestimate the experimental values in this case, but the agreement is still very good below
250 K if the Grüneisen formalism is adopted.

The constant volume heat capacities at zero pressure were calculated using equation (6),
in which we use the interpolated phonon frequencies computed at the lattice constant
that minimizes the respective free energy at each temperature T . The constant pressure
heat capacity is linked to the constant volume heat capacity by CP (T ) = CV (T ) +
T B0(T )V0(T )α2

V (T ), where V0 is the volume of the primitive unit cell, αV the volumetric
thermal expansion coefficient (which is three times the linear thermal expansion coefficient in
our case) and B0 the bulk modulus. All the quantities are evaluated at each of the temperatures

9



J. Phys.: Condens. Matter 19 (2007) 086209 W Yu et al

0 100 200 300 400 500 600 700
0

1

2

3

4

5

Temperature(K)

Temperature(K)

(a) 

0 100 200 300 400 500
0

1

2

3

4

5

(b) 

α 
(T

)(
10

–
5 K

–
1 )

α 
(T

)(
10

–
5 K

–
1 )

Figure 6. Coefficients of linear thermal expansion for NaH as a function of temperature calculated
with (a) LDA-PZ and (b) GGA-PBE approximations. Dotted and solid lines are calculated using
the Grüneisen formalism [18] at the static and zero-point motion corrected equilibrium geometries
respectively. Open squares represent the direct numerical differentiation of the lattice constants.

considered. We present results on the heat capacities in figures 7 and 8 ((a) and (b)). We can
see that the agreement with experiments is excellent except in the high temperature range of
LiH GGA calculation.

Finally, similar to the heat capacity, the vibrational entropies for NaH were calculated using
equation (5) and displayed in figure 8 ((c) and (d)). It is seen that, even at high temperature, the
agreement with the experimental data is still excellent for LDA calculation while GGA slightly
overestimates the experimental values.

3.4. Equation of states and B1-to-B2 phase transition

The structural phase transition of NaH, KH and CsH from the low-pressure rock-salt (B1)
structure to the high-pressure caesium chloride (B2) structure has been observed at pressures
lower than 30 GPa [9, 30]. We have calculated the equation of states and the B1-to-B2
transition pressures for LiH and NaH systems. The EOS is calculated both at zero temperature
and 300 K. The B1-to-B2 phase transition in LiH has not been observed up to now. There
have been many theoretical predictions for this phase transition and the estimated transition
pressure ranging from about 300 to 600 GPa. Given the large discrepancies of the theoretical
predictions, we only calculated in this paper the transition pressure at zero temperature,
neglecting the vibrational effect. For NaH, the transition pressure is also computed at 300 K.
All the calculations are done with the LDA approximation only for electronic exchange and
correlation.
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Figure 7. Heat capacities for LiD ((a) LDA, (b) GGA) and LiH ((c) LDA, (d) GGA) as a function
of temperature calculated with LDA-PZ and GGA-PBE approximations. The dotted line denotes
the constant volume heat capacity. Dashed and solid lines are the constant pressure heat capacities
obtained using the two types of linear thermal expansion coefficients calculated by the Grüneisen
formalism at the static and zero-point motion corrected equilibrium geometries respectively. Filled
circles are the experimental data [33]. Open squares are high temperature experimental values
from [34].

For the B1 phase, we use the Vinet form [31] (universal equation of state) to fit the
calculated free energies because the Murnaghan equation of state is too ‘hard’ at high pressure.
As the B2 phase is unstable at low pressure, this fitting method will not be accurate because the
free energies could only be calculated at smaller volumes far from the zero-pressure geometry.
Therefore, we use equation (2) to calculate the volume dependence of the pressure directly. We
present in figure 9 the 300 K pressure-versus-volume equation of state for NaH in both B1 and
B2 phases. The agreement between experiment and theory is very good.

Experimentally [9], the B1-to-B2 transition for NaH is reversible and happens at a
transition pressure of 29.3 ± 0.9 GPa and a volume fraction V/V0 = 0.61 ± 0.01. Our LDA
calculation at zero temperature, as shown in figure 10(a), gives a transition pressure of 31.8 GPa
at a volume fraction V/V0 = 0.63. The transition pressure is determined from the common
tangent of the static energy–volume curves for B1 and B2 phases. The change in volume at the
transition pressure is 11.3% of the B1 phase volume. The calculated transition pressure is in
better agreement with the experiment than the theoretical result of 37 GPa from [3].

In order to account for the vibrational effect on the phase transition pressure, we calculated
the free energies for the B1 and B2 phases at different volumes by the same method as used
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Figure 8. Heat capacities ((a) LDA, (b) GGA) and vibrational entropies ((c) LDA, (d) GGA)
for NaH as a function of temperature calculated with LDA-PZ and GGA-PBE approximations.
Dotted lines denote the constant volume heat capacity. Dashed and solid lines ((a) and (b)) are
the constant pressure heat capacities obtained using the two types of linear thermal expansion
coefficients calculated by the Grüneisen formalism at the static and zero-point motion corrected
equilibrium geometries respectively. Filled circles are the experimental data [34]. Solid lines in (c)
and (d) are the results of this work.

to calculate the thermodynamic properties. From the 300 K Helmholtz free energy–volume
curves (shown in figure 10(b)), we determined the transition pressure of 29.6 GPa at a volume
fraction V/V0 = 0.60. This is in excellent agreement with the experiment. The change in
volume at the transition pressure is 7% of the B1 phase volume at the same pressure, which is
smaller than the experimental value of 10% at 29.3 GPa. Due to the rather scattered nature of
the experimental points around the transition pressure, the uncertainty for the volume change
may be large.

The pressure-versus-volume equation of state at 300 K for LiD and LiH at B1 phase is
shown in figure 11. All the curves are fitted by the Vinet equation of state either using the
experimental or calculated bulk modulus and its pressure derivative. The two curves for LiD
and LiH are very close to each other and to the zero-temperature (zero-point motion included)
curve fitted using the data given by Hamma et al. The overall agreement with experiment
is good up to about 130 GPa. The seemingly better agreement between the experimental
and zero-temperature theoretical data by Martins [6] (the zero-point motion effect included)
is in fact due to a poor sampling in the evaluation of the zero-point energy which makes the
calculated zero-pressure lattice parameter (7.63 bohr) much larger than the results by other
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Figure 9. Equation of state for NaH B1 and B2 phases calculated with the LDA-PZ approximation.
The upper solid line is for the B1 phase fitted to the Vinet [31] equation of state. The lower solid line
is for the B2 phase calculated using equation (2). The filled circles and squares are the experimental
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Figure 10. Energy versus volume relationship calculated with the LDA-PZ approximation for NaH
B1 and B2 phases at (a) 0 K and (b) 300 K. The solid line denotes the common tangent of the two
curves along which the phase transition happens.

authors. In drawing the p–V curves of our calculations, we used the theoretical equilibrium
volume instead of the experimental one. If the experimental equilibrium volume is used, the
agreement with experiment will be even better. Using similar procedure as we did for NaH, we
found for LiH the B1-to-B2 transition pressure at zero temperature to be 308 GPa at a volume
fraction V/V0 = 0.329 or V/V0 = 0.289 if V0 is taken as the average experimental equilibrium
volume (a0 = 7.717 au). Our transition pressure is very close to the value of 313 GPa found by
Wang et al [15] and also in good agreement with the calculation of Lebegue et al [11]. Their
calculated transition pressure is 329 GPa at a volume fraction of V/V0 = 0.29, where V0 is the
experimental equilibrium volume.

4. Conclusions

In conclusion, using plane wave pseudopotential density functional theory and density
functional perturbation theory within the framework of the quasiharmonic approximation we
have calculated the phonon dispersions and thermodynamic properties for the lighter alkali
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Figure 11. Equation of states for LiD and LiH B1 phases calculated with the LDA-PZ
approximation. The filled circles are the fitted values by the Vinet equation of state using the
experimental bulk modulus and its pressure derivative from Loubeyre et al [2]. Temperature and
zero-point effects are not taken into account.

hydrides LiD, LiH and NaH. The equation of states and B1-to-B2 phase transition are also
discussed. We found it is essential to include explicitly the semi-core states in the valence states
in order to make accurate calculations comparable to experiments. The calculated equilibrium
lattice parameters and bulk moduli are in good agreement with experiments if the lattice
vibrational effect is taken into account. From the phonon dispersion calculation, we found
that the B2 phase is unstable at low pressure and becomes stable with increasing pressure. The
calculated thermodynamic properties agree quite well with the experimental data, especially at
low temperature. When the temperature dependence of the free energy is taken into account,
the calculated B1-to-B2 transition pressure for NaH (29.6 GPa) is in excellent agreement with
the experimental value of 29.3±0.9 GPa. The transition pressure for LiH (308 GPa) is also very
close to the values most recently calculated by other authors using full-potential DFT method.
It is also true that in the case of large zero-point movement effect the QHA works well.
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